Rivet Analyses Reference

ATLAS_2020_I1808726

Hadronic event shapes in multijet final states
Experiment: ATLAS (LHC)
Inspire ID: 1808726
Status: VALIDATED
Authors:
  • Javier Llorente
  • Deepak Kar
References:Beams: p+ p+
Beam energies: (6500.0, 6500.0) GeV
Run details:
  • Jet production at 13000 GeV.

A measurement of event-shape variables in proton−proton collisions at large momentum transfer is presented using data collected at s√=13 TeV with the ATLAS detector at the Large Hadron Collider. Six event-shape variables calculated using hadronic jets are studied in inclusive multijet events using data corresponding to an integrated luminosity of 139 fb$^{-1}$. Measurements are performed in bins of jet multiplicity and in different ranges of the scalar sum of the transverse momenta of the two leading jets, reaching scales beyond 2 TeV. These measurements are compared with predictions from Monte Carlo event generators containing leading-order or next-to-leading order matrix elements matched to parton showers simulated to leading-logarithm accuracy. At low jet multiplicities, shape discrepancies between the measurements and the Monte Carlo predictions are observed. At high jet multiplicities, the shapes are better described but discrepancies in the normalisation are observed.

Source code: ATLAS_2020_I1808726.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/Sphericity.hh"


namespace Rivet {

  /// @brief Multijet event shapes at 13 TeV
  class ATLAS_2020_I1808726 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(ATLAS_2020_I1808726);

    double xs1 = 0.0;
    double xs2 = 0.0;
    double xs3 = 0.0;

    /// Initialization, called once before running
    void init() {

      //Jet collection (excluding muons and neutrinos)
      const FinalState fs(Cuts::abseta < 4.5);

      FastJets jets(fs, FastJets::ANTIKT, 0.4, JetAlg::Muons::NONE, JetAlg::Invisibles::NONE);
      declare(jets, "Jets");

      // Book histograms
      //Jet multiplicity
      book(_h["njet_h1"], 73, 1, 1);
      book(_h["njet_h2"], 74, 1, 1);
      book(_h["njet_h3"], 75, 1, 1);

      //Transverse thrust
      book(_h["transThrust_j3_h1"], 1, 1, 1);
      book(_h["transThrust_j3_h2"], 5, 1, 1);
      book(_h["transThrust_j3_h3"], 9, 1, 1);
      book(_h["transThrust_j4_h1"], 2, 1, 1);
      book(_h["transThrust_j4_h2"], 6, 1, 1);
      book(_h["transThrust_j4_h3"], 10, 1, 1);
      book(_h["transThrust_j5_h1"], 3, 1, 1);
      book(_h["transThrust_j5_h2"], 7, 1, 1);
      book(_h["transThrust_j5_h3"], 11, 1, 1);
      book(_h["transThrust_j6_h1"], 4, 1, 1);
      book(_h["transThrust_j6_h2"], 8, 1, 1);
      book(_h["transThrust_j6_h3"], 12, 1, 1);

      //Thrust minor
      book(_h["transMinor_j3_h1"], 13, 1, 1);
      book(_h["transMinor_j3_h2"], 17, 1, 1);
      book(_h["transMinor_j3_h3"], 21, 1, 1);
      book(_h["transMinor_j4_h1"], 14, 1, 1);
      book(_h["transMinor_j4_h2"], 18, 1, 1);
      book(_h["transMinor_j4_h3"], 22, 1, 1);
      book(_h["transMinor_j5_h1"], 15, 1, 1);
      book(_h["transMinor_j5_h2"], 19, 1, 1);
      book(_h["transMinor_j5_h3"], 23, 1, 1);
      book(_h["transMinor_j6_h1"], 16, 1, 1);
      book(_h["transMinor_j6_h2"], 20, 1, 1);
      book(_h["transMinor_j6_h3"], 24, 1, 1);

      //Transverse sphericity
      book(_h["transSphericity_j3_h1"], 25, 1, 1);
      book(_h["transSphericity_j3_h2"], 29, 1, 1);
      book(_h["transSphericity_j3_h3"], 33, 1, 1);
      book(_h["transSphericity_j4_h1"], 26, 1, 1);
      book(_h["transSphericity_j4_h2"], 30, 1, 1);
      book(_h["transSphericity_j4_h3"], 34, 1, 1);
      book(_h["transSphericity_j5_h1"], 27, 1, 1);
      book(_h["transSphericity_j5_h2"], 31, 1, 1);
      book(_h["transSphericity_j5_h3"], 35, 1, 1);
      book(_h["transSphericity_j6_h1"], 28, 1, 1);
      book(_h["transSphericity_j6_h2"], 32, 1, 1);
      book(_h["transSphericity_j6_h3"], 36, 1, 1);

      //Aplanarity
      book(_h["aplanarity_j3_h1"], 37, 1, 1);
      book(_h["aplanarity_j3_h2"], 41, 1, 1);
      book(_h["aplanarity_j3_h3"], 45, 1, 1);
      book(_h["aplanarity_j4_h1"], 38, 1, 1);
      book(_h["aplanarity_j4_h2"], 42, 1, 1);
      book(_h["aplanarity_j4_h3"], 46, 1, 1);
      book(_h["aplanarity_j5_h1"], 39, 1, 1);
      book(_h["aplanarity_j5_h2"], 43, 1, 1);
      book(_h["aplanarity_j5_h3"], 47, 1, 1);
      book(_h["aplanarity_j6_h1"], 40, 1, 1);
      book(_h["aplanarity_j6_h2"], 44, 1, 1);
      book(_h["aplanarity_j6_h3"], 48, 1, 1);

      //C
      book(_h["C_j3_h1"], 49, 1, 1);
      book(_h["C_j3_h2"], 53, 1, 1);
      book(_h["C_j3_h3"], 57, 1, 1);
      book(_h["C_j4_h1"], 50, 1, 1);
      book(_h["C_j4_h2"], 54, 1, 1);
      book(_h["C_j4_h3"], 58, 1, 1);
      book(_h["C_j5_h1"], 51, 1, 1);
      book(_h["C_j5_h2"], 55, 1, 1);
      book(_h["C_j5_h3"], 59, 1, 1);
      book(_h["C_j6_h1"], 52, 1, 1);
      book(_h["C_j6_h2"], 56, 1, 1);
      book(_h["C_j6_h3"], 60, 1, 1);

      //D
      book(_h["D_j3_h1"], 61, 1, 1);
      book(_h["D_j3_h2"], 65, 1, 1);
      book(_h["D_j3_h3"], 69, 1, 1);
      book(_h["D_j4_h1"], 62, 1, 1);
      book(_h["D_j4_h2"], 66, 1, 1);
      book(_h["D_j4_h3"], 70, 1, 1);
      book(_h["D_j5_h1"], 63, 1, 1);
      book(_h["D_j5_h2"], 67, 1, 1);
      book(_h["D_j5_h3"], 71, 1, 1);
      book(_h["D_j6_h1"], 64, 1, 1);
      book(_h["D_j6_h2"], 68, 1, 1);
      book(_h["D_j6_h3"], 72, 1, 1);
    }
    
    void analyze(const Event& event) {
      
      const Jets& jets = apply<FastJets>(event, "Jets").jetsByPt(7.0*GeV);
      
      //Select jets passing kinematic cuts
      std::vector<const Jet*> goodJets; goodJets.clear();
      std::vector<Vector3> momenta2; momenta2.clear();
      std::vector<Vector3> momenta3; momenta3.clear();

      //foreach (const Jet& j, jets) {
      for (const Jet& j : jets) {
        if (j.abseta() < 2.4 && j.pt() > 100.0*GeV){
	         goodJets.push_back(&j);

             Vector3 jet2 = j.p3();
             jet2.setZ(0.0);
              momenta2.push_back(jet2);

	          Vector3 jet3 = j.p3();
	          momenta3.push_back(jet3);
	       }
        }
      
      //Dijet event selection
      if (goodJets.size() < 2) vetoEvent;
      double ht2 = goodJets[0]->pt()+goodJets[1]->pt();
      if (ht2 <= 1000.0*GeV) vetoEvent;

      //Jet multiplicity
      if (ht2 > 1000.0*GeV && ht2 < 1500.0*GeV) _h["njet_h1"]->fill(goodJets.size());
      if (ht2 > 1500.0*GeV && ht2 < 2000.0*GeV) _h["njet_h2"]->fill(goodJets.size());
      if (ht2 > 2000.0*GeV) _h["njet_h3"]->fill(goodJets.size());
      
      //Thrust calculation
      Thrust thrust;
      thrust.calc(momenta2);
      const double transThrust  = 1.0 - thrust.thrust();
      const double transMinor = thrust.thrustMajor();
      
      //Linearized sphericity calculation (2D)
      double a11 = 0.0; double a22 = 0.0;
      double a12 = 0.0;
      double modSum2 = 0.0;

      for (size_t k = 0; k < momenta2.size(); ++k) {
        modSum2 += momenta2[k].mod();
	      a11 += momenta2[k].x()*momenta2[k].x()/momenta2[k].mod();
        a22 += momenta2[k].y()*momenta2[k].y()/momenta2[k].mod();
        a12 += momenta2[k].x()*momenta2[k].y()/momenta2[k].mod();
      }

      double trc2 = (a11+a22)/modSum2;
      double det2 = (a11*a22-a12*a12)/pow(modSum2,2);

      double eigen21 = (trc2+sqrt(pow(trc2,2)-4*det2))/2;
      double eigen22 = (trc2-sqrt(pow(trc2,2)-4*det2))/2;
      double transSphericity = 2*eigen22/(eigen21+eigen22);

      //Linearized sphericity calculation (3D)
      double b11 = 0.0; double b12 = 0.0; double b13 = 0.0;
      double b22 = 0.0; double b23 = 0.0;
      double b33 = 0.0;
      double modSum3 = 0.0;

      for (size_t k = 0; k < momenta3.size(); ++k){
        modSum3 += momenta3[k].mod();
        b11 += momenta3[k].x()*momenta3[k].x()/momenta3[k].mod();
        b22 += momenta3[k].y()*momenta3[k].y()/momenta3[k].mod();
        b33 += momenta3[k].z()*momenta3[k].z()/momenta3[k].mod();
        b12 += momenta3[k].x()*momenta3[k].y()/momenta3[k].mod();
        b13 += momenta3[k].x()*momenta3[k].z()/momenta3[k].mod();
        b23 += momenta3[k].y()*momenta3[k].z()/momenta3[k].mod();
      }

      Matrix3 sph3;
      sph3.set(0,0, b11/modSum3); sph3.set(0,1, b12/modSum3); sph3.set(0,2, b13/modSum3);
      sph3.set(1,0, b12/modSum3); sph3.set(1,1, b22/modSum3); sph3.set(1,2, b23/modSum3);
      sph3.set(2,0, b13/modSum3); sph3.set(2,1, b23/modSum3); sph3.set(2,2, b33/modSum3);

      double q = sph3.trace()/3.;
      double p1 = sph3.get(0,1)*sph3.get(0,1) + sph3.get(0,2)*sph3.get(0,2) + sph3.get(1,2)*sph3.get(1,2);
      double p2 = (sph3.get(0,0)-q)*(sph3.get(0,0)-q) + (sph3.get(1,1)-q)*(sph3.get(1,1)-q) + (sph3.get(2,2)-q)*(sph3.get(2,2)-q) + 2*p1;
      double p = sqrt(p2/6.);
      
      Matrix3 I3 = Matrix3::mkIdentity();
      double r = ( 1./p * (sph3 - q*I3)).det()/2.;
      
      double phi(0);
      if (r <= -1) phi = M_PI / 3.;
      else if (r >= 1) phi = 0;
      else phi = acos(r) / 3.;

      double eigen31 = q + 2 * p * cos(phi);
      double eigen33 = q + 2 * p * cos(phi + (2*M_PI/3.));
      double eigen32 = 3 * q - eigen31 - eigen33;

      double aplanarity = (3./2)*eigen33;
      double C = 3*(eigen31*eigen32 + eigen31*eigen33 + eigen32*eigen33);
      double D = 27*eigen31*eigen32*eigen33;

      //Fill event-shape histograms
      if (ht2 > 1000.0*GeV && ht2 < 1500.0*GeV){

      	if (goodJets.size() == 3){ 
	       _h["transThrust_j3_h1"]->fill(transThrust); _h["transMinor_j3_h1"]->fill(transMinor);
	       _h["transSphericity_j3_h1"]->fill(transSphericity); _h["aplanarity_j3_h1"]->fill(aplanarity);
	       _h["C_j3_h1"]->fill(C); _h["D_j3_h1"]->fill(D);
	      }

	   if (goodJets.size() == 4){
          _h["transThrust_j4_h1"]->fill(transThrust); _h["transMinor_j4_h1"]->fill(transMinor);
          _h["transSphericity_j4_h1"]->fill(transSphericity); _h["aplanarity_j4_h1"]->fill(aplanarity);
          _h["C_j4_h1"]->fill(C); _h["D_j4_h1"]->fill(D);
	     }

	   if (goodJets.size() == 5){
          _h["transThrust_j5_h1"]->fill(transThrust); _h["transMinor_j5_h1"]->fill(transMinor);
          _h["transSphericity_j5_h1"]->fill(transSphericity); _h["aplanarity_j5_h1"]->fill(aplanarity);
          _h["C_j5_h1"]->fill(C); _h["D_j5_h1"]->fill(D);
     	}

	   if (goodJets.size() >= 6){
          _h["transThrust_j6_h1"]->fill(transThrust); _h["transMinor_j6_h1"]->fill(transMinor);
          _h["transSphericity_j6_h1"]->fill(transSphericity); _h["aplanarity_j6_h1"]->fill(aplanarity);
          _h["C_j6_h1"]->fill(C); _h["D_j6_h1"]->fill(D);
	    }
      }


      if (ht2 > 1500.0*GeV && ht2 < 2000.0*GeV){

        if (goodJets.size() == 3){
          _h["transThrust_j3_h2"]->fill(transThrust); _h["transMinor_j3_h2"]->fill(transMinor);
          _h["transSphericity_j3_h2"]->fill(transSphericity); _h["aplanarity_j3_h2"]->fill(aplanarity);
          _h["C_j3_h2"]->fill(C); _h["D_j3_h2"]->fill(D);
        }

        if (goodJets.size() == 4){
          _h["transThrust_j4_h2"]->fill(transThrust); _h["transMinor_j4_h2"]->fill(transMinor);
          _h["transSphericity_j4_h2"]->fill(transSphericity); _h["aplanarity_j4_h2"]->fill(aplanarity);
          _h["C_j4_h2"]->fill(C); _h["D_j4_h2"]->fill(D);
        }

        if (goodJets.size() == 5){
          _h["transThrust_j5_h2"]->fill(transThrust); _h["transMinor_j5_h2"]->fill(transMinor);
          _h["transSphericity_j5_h2"]->fill(transSphericity); _h["aplanarity_j5_h2"]->fill(aplanarity);
          _h["C_j5_h2"]->fill(C); _h["D_j5_h2"]->fill(D);
        }

        if (goodJets.size() >= 6){
          _h["transThrust_j6_h2"]->fill(transThrust); _h["transMinor_j6_h2"]->fill(transMinor);
          _h["transSphericity_j6_h2"]->fill(transSphericity); _h["aplanarity_j6_h2"]->fill(aplanarity);
          _h["C_j6_h2"]->fill(C); _h["D_j6_h2"]->fill(D);
        }
      }

      if (ht2 > 2000.0*GeV){

        if (goodJets.size() == 3){
          _h["transThrust_j3_h3"]->fill(transThrust); _h["transMinor_j3_h3"]->fill(transMinor);
          _h["transSphericity_j3_h3"]->fill(transSphericity); _h["aplanarity_j3_h3"]->fill(aplanarity);
          _h["C_j3_h3"]->fill(C); _h["D_j3_h3"]->fill(D);
        }

        if (goodJets.size() == 4){
          _h["transThrust_j4_h3"]->fill(transThrust); _h["transMinor_j4_h3"]->fill(transMinor);
          _h["transSphericity_j4_h3"]->fill(transSphericity); _h["aplanarity_j4_h3"]->fill(aplanarity);
          _h["C_j4_h3"]->fill(C); _h["D_j4_h3"]->fill(D);
        }

        if (goodJets.size() == 5){
          _h["transThrust_j5_h3"]->fill(transThrust); _h["transMinor_j5_h3"]->fill(transMinor);
          _h["transSphericity_j5_h3"]->fill(transSphericity); _h["aplanarity_j5_h3"]->fill(aplanarity);
          _h["C_j5_h3"]->fill(C); _h["D_j5_h3"]->fill(D);
        }

        if (goodJets.size() >= 6){
          _h["transThrust_j6_h3"]->fill(transThrust); _h["transMinor_j6_h3"]->fill(transMinor);
          _h["transSphericity_j6_h3"]->fill(transSphericity); _h["aplanarity_j6_h3"]->fill(aplanarity);
          _h["C_j6_h3"]->fill(C); _h["D_j6_h3"]->fill(D);
        }
      }
    }


    void finalize() {
    
      const double xs1 = _h["njet_h1"]->sumW();
      const double xs2 = _h["njet_h2"]->sumW();
      const double xs3 = _h["njet_h3"]->sumW();
      
      for (auto& hist : _h) {
        if (hist.first.find("njet_") != string::npos)  scale(hist.second, crossSectionPerEvent()/picobarn);
        else if (hist.first.find("_h1") != string::npos) scale(hist.second, 1.0/xs1);
        else if (hist.first.find("_h2") != string::npos) scale(hist.second, 1.0/xs2);
        else if (hist.first.find("_h3") != string::npos) scale(hist.second, 1.0/xs3);
      }
    }

  private:
  
    //Jet multiplicity
    map<string,Histo1DPtr> _h;

  };

  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(ATLAS_2020_I1808726);
}