Rivet Analyses Reference

BESIII_2018_I1658762

Analysis of $\psi(2S)$ decays to $p\bar{p}$ and $n\bar{n}$
Experiment: BESIII (BEPC)
Inspire ID: 1658762
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Rev. D98 (2018) no.3, 032006
Beams: e- e+
Beam energies: (1.8, 1.8) GeV
Run details:
  • e+ e- > Psi(2S)

Analysis of the angular distribution of the baryons produced in $e^+e^-\to\psi(2S) \to p\bar{p}$ and $n\bar{n}$. Gives information about the decay and is useful for testing correlations in hadron decays.

Source code: BESIII_2018_I1658762.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief psi2S baryon decay analysis 
  class BESIII_2018_I1658762 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(BESIII_2018_I1658762);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(Beam(), "Beams");
      declare(UnstableParticles(), "UFS");
      declare(FinalState(), "FS");

      // Book histograms
      book(_h_proton ,"ctheta_p",20,-1.,1.);
      book(_h_neutron,"ctheta_n",20,-1.,1.);

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // get the axis, direction of incoming electron
      const ParticlePair& beams = apply<Beam>(event, "Beams").beams();
      Vector3 axis;
      if(beams.first.pid()>0)
	axis = beams.first .momentum().p3().unit();
      else
	axis = beams.second.momentum().p3().unit();
      // types of final state particles
      const FinalState& fs = apply<FinalState>(event, "FS");
      map<long,int> nCount;
      int ntotal(0);
      Particle outgoing;
      for (const Particle& p :  fs.particles()) {
	nCount[p.pid()] += 1;
	if(p.pid()==2212 || p.pid()==2112)
	  outgoing = p;
	++ntotal;
      }
      if(ntotal==2) {
	if(nCount[2212]==1 && nCount[-2212]==1) {
	  _h_proton->fill(outgoing.momentum().p3().unit().dot(axis));
	}
	else if(nCount[2112]==1 && nCount[-2112]==1) {
	  _h_neutron->fill(outgoing.momentum().p3().unit().dot(axis));
	}
      }
    }

    pair<double,pair<double,double> > calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,make_pair(0.,0.));
      double sum1(0.),sum2(0.),sum3(0.),sum4(0.),sum5(0.);
      for (auto bin : hist->bins() ) {
       	double Oi = bin.area();
	if(Oi==0.) continue;
	double a =  1.5*(bin.xMax() - bin.xMin());
	double b = 0.5*(pow(bin.xMax(),3) - pow(bin.xMin(),3));
       	double Ei = bin.areaErr();
	sum1 +=   a*Oi/sqr(Ei);
	sum2 +=   b*Oi/sqr(Ei);
	sum3 += sqr(a)/sqr(Ei);
	sum4 += sqr(b)/sqr(Ei);
	sum5 +=    a*b/sqr(Ei);
      }
      // calculate alpha
      double alpha = (-3*sum1 + 9*sum2 + sum3 - 3*sum5)/(sum1 - 3*sum2 + 3*sum4 - sum5);
      // and error
      double cc = -pow((sum3 + 9*sum4 - 6*sum5),3);
      double bb = -2*sqr(sum3 + 9*sum4 - 6*sum5)*(sum1 - 3*sum2 + 3*sum4 - sum5);
      double aa =  sqr(sum1 - 3*sum2 + 3*sum4 - sum5)*(-sum3 - 9*sum4 + sqr(sum1 - 3*sum2 + 3*sum4 - sum5) + 6*sum5);      
      double dis = sqr(bb)-4.*aa*cc;
      if(dis>0.) {
	dis = sqrt(dis);
	return make_pair(alpha,make_pair(0.5*(-bb+dis)/aa,-0.5*(-bb-dis)/aa));
      }
      else {
	return make_pair(alpha,make_pair(0.,0.));
      }
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      // proton
      normalize(_h_proton );
      pair<double,pair<double,double> > alpha = calcAlpha(_h_proton);
      Scatter2DPtr _h_alpha_proton;
      book(_h_alpha_proton,1,1,1);
      _h_alpha_proton->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
				make_pair(alpha.second.first,alpha.second.second) );
      // neutron
      normalize(_h_neutron);
      alpha = calcAlpha(_h_neutron);
      Scatter2DPtr _h_alpha_neutron;
      book(_h_alpha_neutron,1,1,2);
      _h_alpha_neutron->addPoint(0.5, alpha.first, make_pair(0.5,0.5),
				 make_pair(alpha.second.first,alpha.second.second) );
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_proton,_h_neutron;
    //@}


  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(BESIII_2018_I1658762);


}