1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/Beam.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/Thrust.hh"
#include "Rivet/Projections/Sphericity.hh"
#include "Rivet/Projections/Hemispheres.hh"
#include "Rivet/Projections/ParisiTensor.hh"
#include "Rivet/Tools/BinnedHistogram.hh"
#include "fastjet/EECambridgePlugin.hh"
namespace Rivet {
/// @brief event shapes vs thrust direction
class DELPHI_2000_I522656 : public Analysis {
public :
/// Constructor
RIVET_DEFAULT_ANALYSIS_CTOR(DELPHI_2000_I522656);
/// @name Analysis methods
///@{
/// Book histograms and initialise projections before the run
void init () {
// Initialise and register projections.
declare(Beam(), "Beams" );
const FinalState fs;
declare(fs, "FS" );
const Thrust thrust(fs);
declare(thrust, "Thrust" );
declare(Sphericity(fs), "Sphericity" );
declare(ParisiTensor(fs), "Parisi" );
declare(Hemispheres(thrust), "Hemispheres" );
declare(FastJets(fs, FastJets:: DURHAM, 0.7 ), "DurhamJets" );
declare(FastJets(fs, FastJets:: JADE , 0.7 ), "JadeJets" );
// book histograms
vector< double > bins= {0.00 ,0.12 ,0.24 ,0.36 ,0.48 ,0.60 ,0.72 ,0.84 ,0.96 };
// thrust angle binned
unsigned int iy= 1 ,ioff= 0 ;
for (unsigned int ix= 0 ;ix< 8 ;++ ix) {
{Histo1DPtr tmp; _h_EEC.add(bins[ix],bins[ix+ 1 ],book(tmp,21 + ioff,1 ,iy));}
{Histo1DPtr tmp;_h_AEEC.add(bins[ix],bins[ix+ 1 ],book(tmp,25 + ioff,1 ,iy));}
{Histo1DPtr tmp;_h_cone.add(bins[ix],bins[ix+ 1 ],book(tmp,29 + ioff,1 ,iy));}
if (ioff== 0 ) {
Histo1DPtr tmp;_h_thrust.add(bins[iy],bins[iy+ 1 ],book(tmp,33 ,1 ,iy));
}
++ iy;
if (iy== 3 ) {
++ ioff;
iy= 1 ;
}
}
// total values
book(_h_EEC_all , 3 ,1 ,1 );
book(_h_AEEC_all , 4 ,1 ,1 );
book(_h_cone_all , 5 ,1 ,1 );
book(_h_thrust_all, 6 ,1 ,1 );
book(_h_Oblateness, 7 ,1 ,1 );
book(_h_C , 8 ,1 ,1 );
book(_h_heavy , 9 ,1 ,1 );
book(_h_sum ,10 ,1 ,1 );
book(_h_diff ,11 ,1 ,1 );
book(_h_wide ,12 ,1 ,1 );
book(_h_total ,13 ,1 ,1 );
book(_h_jade ,17 ,1 ,1 );
book(_h_dur ,18 ,1 ,1 );
book(_h_cam ,20 ,1 ,1 );
book(_h_bin,"/TMP/hbin" ,bins);
}
/// Perform the per-event analysis
void analyze (const Event& event) {
const FinalState& fs = apply< FinalState> (event, "FS" );
if ( fs.particles().size() < 2 ) vetoEvent;
// Get beams and average beam momentum
const ParticlePair& beams = apply< Beam> (event, "Beams" ).beams();
// thrust
const Thrust& thrust = apply< Thrust> (event, "Thrust" );
// angle bettwen thrust and beam
double cosThrust = abs(beams.first.p3().unit().dot(thrust.thrustAxis()));
_h_bin-> fill(cosThrust);
// thrust and related
_h_thrust_all-> fill( 1. - thrust.thrust());
_h_thrust .fill(cosThrust, 1. - thrust.thrust());
_h_Oblateness-> fill(thrust.oblateness() );
// visible energy and make pseudojets
double Evis = 0.0 ;
PseudoJets pjs;
for (const Particle& p : fs.particles()) {
Evis += p.E();
fastjet:: PseudoJet pj = p;
pjs.push_back(pj);
}
double Evis2 = sqr(Evis);
// (A)EEC
// Need iterators since second loop starts at current outer loop iterator, i.e. no "foreach" here!
for (Particles:: const_iterator p_i = fs.particles().begin(); p_i != fs.particles().end(); ++ p_i) {
for (Particles:: const_iterator p_j = p_i; p_j != fs.particles().end(); ++ p_j) {
if (p_i == p_j) continue ;
const Vector3 mom3_i = p_i-> momentum().p3();
const Vector3 mom3_j = p_j-> momentum().p3();
const double energy_i = p_i-> momentum().E();
const double energy_j = p_j-> momentum().E();
const double thetaij = 180. * mom3_i.unit().angle(mom3_j.unit())/ M_PI;
double eec = (energy_i* energy_j) / Evis2;
eec *= 2. ;
_h_EEC_all-> fill( thetaij, eec);
_h_EEC .fill(cosThrust, thetaij, eec);
if (thetaij < 90. ){
_h_AEEC_all-> fill( thetaij, - eec);
_h_AEEC .fill(cosThrust, thetaij, - eec);
}
else {
_h_AEEC_all-> fill( 180. - thetaij, eec);
_h_AEEC .fill(cosThrust,180. - thetaij, eec);
}
}
}
// hemisphere related
const Hemispheres& hemi = apply< Hemispheres> (event, "Hemispheres" );
_h_heavy-> fill(hemi.scaledM2high());
_h_diff -> fill(hemi.scaledM2diff());
_h_sum -> fill(hemi.scaledM2low()+ hemi.scaledM2high());
_h_wide -> fill(hemi.Bmax() );
_h_total-> fill(hemi.Bsum() );
// C-parameter
const ParisiTensor& parisi = apply< ParisiTensor> (event, "Parisi" );
_h_C-> fill(parisi.C());
// jets
const FastJets& durjet = apply< FastJets> (event, "DurhamJets" );
const FastJets& jadejet = apply< FastJets> (event, "JadeJets" );
if (durjet .clusterSeq()) _h_dur -> fill( durjet.clusterSeq()-> exclusive_ymerge_max(2 ));
if (jadejet.clusterSeq()) _h_jade-> fill(jadejet.clusterSeq()-> exclusive_ymerge_max(2 ));
// Cambridge is more complicated, inclusive defn
for (size_t i = 0 ; i < _h_cam-> numBins(); ++ i) {
double ycut = _h_cam-> bin(i).xMax();
// double width = _h_y_2_Cambridge->bin(i).width();
fastjet:: EECambridgePlugin plugin(ycut);
fastjet:: JetDefinition jdef(& plugin);
fastjet:: ClusterSequence cseq(pjs, jdef);
unsigned int njet = cseq.inclusive_jets().size();
if (njet== 2 ) {
_h_cam-> fill( _h_cam-> bin(i).xMid());
break ;
}
}
// jet cone
Vector3 jetAxis= thrust.thrustAxis();
if (hemi.highMassDirection()) jetAxis *=- 1. ;
for (const Particle & p : fs.particles()) {
const double thetaij = 180. * jetAxis.angle(p.p3().unit())/ M_PI;
double jcef = p.E()/ Evis;
_h_cone_all-> fill( thetaij,jcef);
_h_cone .fill(cosThrust,thetaij,jcef);
}
}
/// Normalise histograms etc., after the run
void finalize () {
for (unsigned int ix= 0 ;ix< 8 ;++ ix) {
if (ix< 2 ) scale(_h_thrust.histos()[ix],1. / _h_bin-> bins()[ix].area());
scale(_h_EEC.histos()[ix],180. / M_PI/ _h_bin-> bins()[ix].area());
scale(_h_AEEC.histos()[ix],180. / M_PI/ _h_bin-> bins()[ix].area());
scale(_h_cone.histos()[ix],180. / M_PI/ _h_bin-> bins()[ix].area());
}
// _h_thrust.scale(1./sumOfWeights(),this);
// _h_EEC.scale(180./M_PI/sumOfWeights(),this);
// _h_AEEC.scale(180./M_PI/sumOfWeights(),this);
// _h_cone.scale(180./M_PI/sumOfWeights(),this);
scale(_h_thrust_all, 1. / sumOfWeights());
scale(_h_EEC_all, 180. / M_PI/ sumOfWeights());
scale(_h_AEEC_all, 180. / M_PI/ sumOfWeights());
scale(_h_cone_all, 180. / M_PI/ sumOfWeights());
scale(_h_Oblateness, 1. / sumOfWeights());
scale(_h_C , 1. / sumOfWeights());
scale(_h_heavy , 1. / sumOfWeights());
scale(_h_sum , 1. / sumOfWeights());
scale(_h_diff , 1. / sumOfWeights());
scale(_h_wide , 1. / sumOfWeights());
scale(_h_total , 1. / sumOfWeights());
scale(_h_dur , 1. / sumOfWeights());
scale(_h_jade , 1. / sumOfWeights());
scale(_h_cam , 1. / sumOfWeights());
}
///@}
/// @name Histograms
///@{
Histo1DPtr _h_thrust_all,_h_EEC_all,_h_AEEC_all,_h_cone_all;
Histo1DPtr _h_Oblateness,_h_C,_h_heavy,_h_sum,_h_diff,_h_wide,_h_total;
Histo1DPtr _h_jade,_h_dur,_h_cam;
BinnedHistogram _h_thrust,_h_EEC,_h_AEEC,_h_cone;
Histo1DPtr _h_bin;
///@}
};
RIVET_DECLARE_PLUGIN(DELPHI_2000_I522656);
}