Rivet Analyses Reference

H1_2002_I561885

Measurement of $D^{*\pm}$ meson production in deep inelastic scattering at HERA
Experiment: H1 (HERA)
Inspire ID: 561885
Status: VALIDATED
Authors:
  • Madhav Chithirasreemadam
  • Hannes Jung
No references listed
Beams: p+ e-, e- p+
Beam energies: (820.0, 27.5); (27.5, 820.0) GeV
    No run details listed

The inclusive production of $D^{*\pm}$ (2010) mesons in deep-inelastic scattering is studied with the H1 detector at HERA. In the kinematic region $1 < Q^2 < 100 $ GeV$^2$ and $0.05 < y < 0.7$ in $e^+ p$ cross section for inclusive $D^{*\pm}$ meson production is measured in the visible range $p_{T}^{D*} > 1.5$ GeV and $|\eta^{D*}| < 1.5 $.

Source code: H1_2002_I561885.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/DISKinematics.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// @brief Measurement of D*+- meson production in deep inelastic scattering at HERA (H1)
  class H1_2002_I561885 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(H1_2002_I561885);


    /// @name Analysis methods
    ///@{

    /// Book histograms and initialise projections before the run
    void init() {
    
      
      declare(DISKinematics(), "Kinematics");
      declare(UnstableParticles(), "Dstars");
      //Cuts::abspid == PID::DSTARPLUS

      // Initialise and register projections

      
      Histo1DPtr dummy; //Introducing


      // Book histograms
        book(_h["W_GeV"], 2, 1, 1);
        book(_h["p_tD*"], 3, 1, 1);
        book(_h["logx"], 4, 1, 1);
        book(_h["etaD*"], 5, 1, 1);
        book(_h["Q2"], 6, 1, 1);
        book(_h["Z_D*"], 7, 1, 1);
        
        _h_Q2eta.add(-1.5,-0.5, book(dummy,8,1,1)); 
        _h_Q2eta.add(-0.5,0.5, book(dummy,8,1,2)); 
        _h_Q2eta.add(0.5,1.5, book(dummy,8,1,3)); 


        _h_Q2pt.add(1.5,4., book(dummy,9,1,1)); 
        _h_Q2pt.add(4.,10., book(dummy,9,1,2)); 


        _h_eta1.add(0,0.25, book(dummy,10,1,1));
        _h_eta1.add(0.25,0.50, book(dummy,10,1,2));
        _h_eta1.add(0.5,1, book(dummy,10,1,3));
         
         
        _h_eta2.add(1.5,2.5, book(dummy,11,1,1));
        _h_eta2.add(2.5,4.0, book(dummy,11,1,2));
        _h_eta2.add(4.0,10.0,book(dummy,11,1,3));
         
         
        _h_zD1.add(1.5,2.5, book(dummy,12,1,1));
        _h_zD1.add(2.5,4.0, book(dummy,12,1,2));
        _h_zD1.add(4.0,10.0, book(dummy,12,1,3));
                 
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
          
      const DISKinematics& kin = applyProjection<DISKinematics>(event, "Kinematics");
      
       // Q2 and inelasticity cuts
      if (!inRange(kin.Q2(), 1.0*GeV2, 100*GeV2)) vetoEvent;
      if (!inRange(kin.y(), 0.05, 0.7)) vetoEvent;
      
        // D* reconstruction
      // const Particles unstables = apply<ParticleFinder>(event, "Dstars").particles(Cuts::pT > 1.5*GeV && Cuts::abseta < 1.5);
      const Particles unstables = apply<ParticleFinder>(event, "Dstars").particles(Cuts::pT > 1.5*GeV );
      const Particles dstars = filter_select(unstables, [](const Particle& p){ return p.abspid() == PID::DSTARPLUS; });
      if (dstars.empty()) vetoEvent;
      // MSG_DEBUG("#D* = " << dstars.size());
      //const Particle& dstar = dstars.front();
      for(const Particle& dstar : dstars){
      const double zD = (dstar.E() - dstar.pz()) / (2*kin.beamLepton().E()*kin.y());
  
  
  // Single-differential histograms
    //     cout << " ' D* found "<< dstar.pid() << " " <<  kin.Q2() << " " << kin.x() << " " << dstar.pT() << " " << dstar.eta() << " " << dstar.rapidity() << endl;
        _h["p_tD*"]->fill(dstar.pT()/GeV);
        _h["etaD*"]->fill(dstar.eta());
        _h["Z_D*"]->fill(zD/GeV);
        _h["Q2"]->fill(kin.Q2()/GeV2);
        _h["W_GeV"]->fill(sqrt(kin.W2())/GeV);
        _h["logx"]->fill(log10(kin.x()));
  // Double-differential (y,Q2) histograms

        _h_Q2eta.fill(dstar.eta(),kin.Q2());
        _h_Q2pt.fill(dstar.pT(),kin.Q2());

        _h_eta1.fill(zD, dstar.eta());
        _h_eta2.fill(dstar.pT(), dstar.eta());
        _h_zD1.fill(dstar.pT(), zD/GeV);

        }
    }


    /// Normalise histograms etc., after the run
    void finalize() {
    

     const double sf = crossSection()/nanobarn/sumOfWeights();
      scale(_h["p_tD*"], sf);
      scale(_h["etaD*"], sf);
      scale(_h["Z_D*"], sf);
      scale(_h["Q2"], sf);
      scale(_h["W_GeV"], sf);
      scale(_h["logx"], sf);
      
      _h_Q2eta.scale(sf, this );
      _h_Q2pt.scale(sf, this );
      _h_eta1.scale(sf, this );
      _h_eta2.scale(sf, this );
      _h_zD1.scale(sf, this );
        

    }

    ///@}


    /// @name Histograms
    ///@{
    map<string, Histo1DPtr> _h;
    map<string, Profile1DPtr> _p;
    map<string, CounterPtr> _c;
    BinnedHistogram _h_eta1,_h_eta2,_h_zD1, _h_Q2eta, _h_Q2pt;
    ///@}


  };


  RIVET_DECLARE_PLUGIN(H1_2002_I561885);

}