Rivet Analyses Reference

LHCB_2016_I1490663

Charm hadron differential cross-sections in $p_\perp$ and rapidity at $\sqrt{s} = 5$ TeV
Experiment: LHCB (LHC 5TeV)
Inspire ID: 1396331
Status: VALIDATED
Authors:
  • Dominik Muller
  • Patrick Spradlin
References:
  • JHEP 1706 (2017) 147
  • doi JHEP 1706 (2017) 147
  • arXiv 1610.02230 [hep-ex]
  • CERN-EP-2016-244, LHCB-PAPER-2016-042
Beams: p+ p+
Beam energies: (2500.0, 2500.0) GeV
Run details:
  • Minimum bias QCD events, proton--proton interactions at $\sqrt{s} = 5$ TeV.

Measurements of differential production cross-sections with respect to transverse momentum, $d \sigma(H_c + \mathrm{c.c.}) / d p_T$, for charm hadron species $H_c \in \{ D^0, D^+, D^\ast(2010)^+, D_s^+ \}$ in proton--proton collisions at center-of-mass energy $\sqrt{s}= 5$ TeV. The differential cross-sections are measured in bins of hadron transverse momentum ($p_T$) and rapidity ($y$) with respect to the beam axis in the region $0 < p_T < 10$ GeV/$c$ and $2.0 < y < 4.5$, where $p_T$ and $y$ are measured in the proton--proton CM frame. In this analysis code, it is assumed that the event coordinate system is in the proton--proton CM frame with the $z$-axis corresponding to the proton--proton collision axis (as usual). Contributions of charm hadrons from the decays of $b$-hadrons and other particles with comparably large mean lifetimes have been removed in the measurement. In this analysis code, this is implemented by counting only charm hadrons that do not have an ancestor that contains a $b$ quark.

Source code: LHCB_2016_I1490663.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Tools/BinnedHistogram.hh"
#include "Rivet/Projections/UnstableParticles.hh"

namespace Rivet {


  /// LHCb prompt charm hadron pT and rapidity spectra
  class LHCB_2016_I1490663 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(LHCB_2016_I1490663);


    /// @name Analysis methods
    /// @{

    /// Book histograms and initialise projections before the run
    void init() {

      /// Initialise and register projections
      declare(UnstableParticles(), "UFS");

      /// Book histograms
      /// @todo Make this interface nicer!
      {Histo1DPtr tmp; _h_pdg411_Dplus_pT_y.add(2.0, 2.5, book(tmp, 1, 1, 1));}
      {Histo1DPtr tmp; _h_pdg411_Dplus_pT_y.add(2.5, 3.0, book(tmp, 1, 1, 2));}
      {Histo1DPtr tmp; _h_pdg411_Dplus_pT_y.add(3.0, 3.5, book(tmp, 1, 1, 3));}
      {Histo1DPtr tmp; _h_pdg411_Dplus_pT_y.add(3.5, 4.0, book(tmp, 1, 1, 4));}
      {Histo1DPtr tmp; _h_pdg411_Dplus_pT_y.add(4.0, 4.5, book(tmp, 1, 1, 5));}

      {Histo1DPtr tmp; _h_pdg421_Dzero_pT_y.add(2.0, 2.5, book(tmp, 2, 1, 1));}
      {Histo1DPtr tmp; _h_pdg421_Dzero_pT_y.add(2.5, 3.0, book(tmp, 2, 1, 2));}
      {Histo1DPtr tmp; _h_pdg421_Dzero_pT_y.add(3.0, 3.5, book(tmp, 2, 1, 3));}
      {Histo1DPtr tmp; _h_pdg421_Dzero_pT_y.add(3.5, 4.0, book(tmp, 2, 1, 4));}
      {Histo1DPtr tmp; _h_pdg421_Dzero_pT_y.add(4.0, 4.5, book(tmp, 2, 1, 5));}

      {Histo1DPtr tmp; _h_pdg431_Dsplus_pT_y.add(2.0, 2.5, book(tmp, 3, 1, 1));}
      {Histo1DPtr tmp; _h_pdg431_Dsplus_pT_y.add(2.5, 3.0, book(tmp, 3, 1, 2));}
      {Histo1DPtr tmp; _h_pdg431_Dsplus_pT_y.add(3.0, 3.5, book(tmp, 3, 1, 3));}
      {Histo1DPtr tmp; _h_pdg431_Dsplus_pT_y.add(3.5, 4.0, book(tmp, 3, 1, 4));}
      {Histo1DPtr tmp; _h_pdg431_Dsplus_pT_y.add(4.0, 4.5, book(tmp, 3, 1, 5));}

      {Histo1DPtr tmp; _h_pdg413_Dstarplus_pT_y.add(2.0, 2.5, book(tmp, 4, 1, 1));}
      {Histo1DPtr tmp; _h_pdg413_Dstarplus_pT_y.add(2.5, 3.0, book(tmp, 4, 1, 2));}
      {Histo1DPtr tmp; _h_pdg413_Dstarplus_pT_y.add(3.0, 3.5, book(tmp, 4, 1, 3));}
      {Histo1DPtr tmp; _h_pdg413_Dstarplus_pT_y.add(3.5, 4.0, book(tmp, 4, 1, 4));}
      {Histo1DPtr tmp; _h_pdg413_Dstarplus_pT_y.add(4.0, 4.5, book(tmp, 4, 1, 5));}

      for (int i = 0; i< 5; ++i) {
      	{Histo1DPtr tmp; _hbr_Dzero.add(2.0+i*0.5, 2.5+i*0.5, book(tmp, "TMP/Dzero_b"+to_str(i+1), refData(9, 1, 2)));}
      	{Histo1DPtr tmp; _hbr_Dplus.add(2.0+i*0.5, 2.5+i*0.5, book(tmp, "TMP/Dplus_b"+to_str(i+1), refData(9, 1, 2)));}
      	{Histo1DPtr tmp; _hbr_Ds.add(2.0+i*0.5, 2.5+i*0.5, book(tmp, "TMP/Ds_b"+to_str(i+1), refData(9, 1, 2)));}
      	{Histo1DPtr tmp; _hbr_Dstar.add(2.0+i*0.5, 2.5+i*0.5, book(tmp, "TMP/Dstar_b"+to_str(i+1), refData(9, 1, 2)));}
      }

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {

      /// @todo Use PrimaryHadrons to avoid double counting and automatically remove the contributions from unstable?
      const UnstableParticles &ufs = apply<UnstableParticles> (event, "UFS");
      for (const Particle& p : ufs.particles() ) {

        // We're only interested in charm hadrons
        //if (!p.isHadron() || !p.hasCharm()) continue;

        PdgId apid = p.abspid();

        // do not use Cuts::abspid to avoid supplemental iteration on particles?
        if ((apid != 411) && (apid != 421) && (apid != 431) && (apid != 413)) continue;

        // Experimental selection removes non-prompt charm hadrons: we ignore those from b decays
        if (p.fromBottom()) continue;

        // Kinematic acceptance
        const double y = p.absrap(); ///< Double analysis efficiency with a "two-sided LHCb"
        const double pT = p.pT()/GeV;

        // Fiducial acceptance of the measurements
        if ((pT > 10.0) || (y < 2.0) || (y > 4.5)) continue;

        Particles daus;

        switch (apid) {
        case 411:
          _h_pdg411_Dplus_pT_y.fill(y, pT);
          // veto on decay channel [D+ -> K- pi+ pi+]cc
          if (p.children().size() != 3) break;
          if ( ((p.children(Cuts::pid == -321).size() == 1) && (p.children(Cuts::pid == 211).size() == 2)) ||
          		 ((p.children(Cuts::pid == 321).size() == 1) && (p.children(Cuts::pid == -211).size() == 2)) )
          	_hbr_Dplus.fill(y, pT); // MSG_INFO("Found [ D+ -> K- pi+ pi+ ]cc..."); };
          break;
        case 421:
          _h_pdg421_Dzero_pT_y.fill(y, pT);
          // veto on decay channel [D0 -> K- pi+]cc
          if (p.children().size() != 2) break;
          if ( ((p.children(Cuts::pid == -321).size() == 1) && (p.children(Cuts::pid == 211).size() == 1)) ||
          		 ((p.children(Cuts::pid == 321).size() == 1) && (p.children(Cuts::pid == -211).size() == 1)) )
          	_hbr_Dzero.fill(y, pT); // MSG_INFO("Found [ D0 -> K- pi+ ]cc..."); };
          break;
        case 431:
          _h_pdg431_Dsplus_pT_y.fill(y, pT);
          //veto on decay channel [Ds+ -> [K+ K-]phi0 pi+]cc
          if (p.children().size() != 2) break;
          daus = p.children(Cuts::pid == 333);
          if ( (daus.size() == 1) && (p.children(Cuts::abspid == 211).size() == 1) &&
          		 (daus.front().children(Cuts::abspid ==321).size() == 2) )
          	_hbr_Ds.fill(y, pT); // MSG_INFO("Found [ Ds+ -> phi0(-> K+ K-) pi+ ]cc..."); };
          break;
        case 413:
          _h_pdg413_Dstarplus_pT_y.fill(y, pT);
          // veto on decay channel [D*+ -> [K- pi+]D0 pi+]cc
          if (p.children().size() != 2) break;
          daus = p.children(Cuts::pid == 421);
          if ( (daus.size() == 1) && (p.children(Cuts::abspid == 211).size() == 1) &&
          		( daus.front().children().size() == 2 ) &&
          		( ( (daus.front().children(Cuts::pid == -321).size() == 1 ) && (daus.front().children(Cuts::pid == 211).size() == 1 )	) ||
          		  ( (daus.front().children(Cuts::pid == 321).size() == 1 ) && (daus.front().children(Cuts::pid == -211).size() == 1 ) ) ) )
          	_hbr_Dstar.fill(y, pT); // MSG_INFO("Found [ D*+ -> D0 (-> K- pi+)cc pi+ ]cc..."); };
          break;
        default:
        	break;
        }
      }

    }


    /// Normalise histograms etc., after the run
    void finalize() {

      /// Factor of 0.5 to correct for the abs(rapidity) used above
      const double scale_factor = 0.5 * crossSection()/microbarn / sumOfWeights();

      /// Avoid the implicit division by the bin width in the BinnedHistogram::scale method.
      /// @todo Another thing to make nicer / more flexible in BinnedHisto
      for (Histo1DPtr h : _h_pdg411_Dplus_pT_y.histos()) h->scaleW(scale_factor);
      for (Histo1DPtr h : _h_pdg421_Dzero_pT_y.histos()) h->scaleW(scale_factor);
      for (Histo1DPtr h : _h_pdg431_Dsplus_pT_y.histos()) h->scaleW(scale_factor);
      for (Histo1DPtr h : _h_pdg413_Dstarplus_pT_y.histos()) h->scaleW(scale_factor);

      // Do ratios
      for (int i = 0; i < 5; ++i) {
      	book(hr_DplusDzero[i], 9, 1, i+1, true);
      	book(hr_DsDzero[i], 10, 1, i+1, true);
      	book(hr_DstarDzero[i], 11, 1, i+1, true);
      	book(hr_DsDplus[i], 12, 1, i+1, true);
      	book(hr_DstarDplus[i], 13, 1, i+1, true);
      	book(hr_DsDstar[i], 14, 1, i+1, true);
      	ratioScatterBins(_hbr_Dplus.histos()[i], _hbr_Dzero.histos()[i], hr_DplusDzero[i]);
      	ratioScatterBins(_hbr_Ds.histos()[i], _hbr_Dzero.histos()[i], hr_DsDzero[i]);
      	ratioScatterBins(_hbr_Dstar.histos()[i], _hbr_Dzero.histos()[i], hr_DstarDzero[i]);
      	ratioScatterBins(_hbr_Ds.histos()[i], _hbr_Dplus.histos()[i], hr_DsDplus[i]);
      	ratioScatterBins(_hbr_Dstar.histos()[i], _hbr_Dplus.histos()[i], hr_DstarDplus[i]);
      	ratioScatterBins(_hbr_Ds.histos()[i], _hbr_Dstar.histos()[i], hr_DsDstar[i]);
      	// scale 100x as measurement is in %
      	hr_DplusDzero[i]->scaleY(100.);
      	hr_DsDzero[i]->scaleY(100.);
      	hr_DstarDzero[i]->scaleY(100.);
      	hr_DsDplus[i]->scaleY(100.);
      	hr_DstarDplus[i]->scaleY(100.);
      	hr_DsDstar[i]->scaleY(100.);
      }

    }

    /// @}


  private:

    void ratioScatterBins(Histo1DPtr& hn, Histo1DPtr& hd, Scatter2DPtr &s) {
    	vector<double> sedges;
    	// extract bin edges from Scatter2D
    	for (auto p=s->points().begin(); p != s->points().end(); ++p) {
    		sedges.push_back((*p).xMin());
    		// MSG_INFO("Scatter2D bin: " << (*p).xMin() << " - " << (*p).xMax());
    	};
    	sedges.push_back(s->points().back().xMax());
    	// make deep-copies as rebinning changes bins each time - any smarter alternative ?!
    	Histo1D *hnc, *hdc;
    	hnc = new YODA::Histo1D(hn->bins(), hn->totalDbn(), hn->underflow(), hn->overflow());
    	hdc = new YODA::Histo1D(hd->bins(), hd->totalDbn(), hd->underflow(), hd->overflow());
    	hnc->rebinTo(sedges);
    	hdc->rebinTo(sedges);
    	divide(*hnc, *hdc, s);
    	delete hnc; delete hdc;
    }


    /// @name Histograms
    /// @{
    BinnedHistogram _h_pdg411_Dplus_pT_y, _hbr_Dplus;
    BinnedHistogram _h_pdg421_Dzero_pT_y, _hbr_Dzero;
    BinnedHistogram _h_pdg431_Dsplus_pT_y, _hbr_Ds;
    BinnedHistogram _h_pdg413_Dstarplus_pT_y, _hbr_Dstar;
    Scatter2DPtr hr_DplusDzero[5];
    Scatter2DPtr hr_DsDzero[5];
    Scatter2DPtr hr_DstarDzero[5];
    Scatter2DPtr hr_DsDplus[5];
    Scatter2DPtr hr_DstarDplus[5];
    Scatter2DPtr hr_DsDstar[5];
    /// @}

  };


  RIVET_DECLARE_PLUGIN(LHCB_2016_I1490663);

}