Rivet Analyses Reference

MC_TTBAR

MC analysis for ttbar studies
Experiment: ()
Status: VALIDATED
Authors:
  • Hendrik Hoeth
  • Andy Buckley
  • Christian Gutschow
  • Dave Mallows
  • Michal Kawalec
No references listed
Beams: * *
Beam energies: ANY
Run details:
  • pp -> tt, force top decays to be one of all hadronic / single leptonic / dileptonic / non-all-hadronic.

This is a pure Monte Carlo study for $t\bar{t}$ production.

Source code: MC_TTBAR.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FinalState.hh"
#include "Rivet/Projections/VetoedFinalState.hh"
#include "Rivet/Projections/ChargedLeptons.hh"
#include "Rivet/Projections/MissingMomentum.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/AnalysisLoader.hh"

namespace Rivet {

  


  class MC_TTBAR : public Analysis {
  public:

    /// Minimal constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(MC_TTBAR);


    /// @name Analysis methods
    //@{

    /// Set up projections and book histograms
    void init() {

      _mode = 1; string pre = "onelep_"; // default is single-lepton decay mode
      if ( getOption("TTMODE") == "ALLHAD" ) { _mode = 0; pre = "allhad_"; }
      if ( getOption("TTMODE") == "ONELEP" ) { _mode = 1; pre = "onelep_"; }
      if ( getOption("TTMODE") == "TWOLEP" ) { _mode = 2; pre = "twolep_"; }
      if ( getOption("TTMODE") == "ANYLEP" ) { _mode = 3; pre = "anylep_"; }

      // A FinalState is used to select particles within |eta| < 4.2 and with pT
      // > 30 GeV, out of which the ChargedLeptons projection picks only the
      // electrons and muons, to be accessed later as "LFS".
      ChargedLeptons lfs(FinalState(Cuts::abseta < 4.2 && Cuts::pT > 30*GeV));
      declare(lfs, "LFS");

      // A second FinalState is used to select all particles in |eta| < 4.2,
      // with no pT cut. This is used to construct jets and measure missing
      // transverse energy.
      VetoedFinalState fs(FinalState(Cuts::abseta < 4.2));
      fs.addVetoOnThisFinalState(lfs);
      declare(FastJets(fs, FastJets::ANTIKT, 0.6), "Jets");
      declare(MissingMomentum(fs), "MissingET");

      // Booking of histograms
      book(_h["njets"], pre + "jet_mult", 11, -0.5, 10.5);
      //
      book(_h["jet_1_pT"], pre + "jet_1_pT", logspace(50, 20.0, 500.0));
      book(_h["jet_2_pT"], pre + "jet_2_pT", logspace(50, 20.0, 400.0));
      book(_h["jet_3_pT"], pre + "jet_3_pT", logspace(50, 20.0, 300.0));
      book(_h["jet_4_pT"], pre + "jet_4_pT", logspace(50, 20.0, 200.0));
      book(_h["jet_HT"],   pre + "jet_HT", logspace(50, 100.0, 2000.0));
      //
      book(_h["bjet_1_pT"], pre + "jetb_1_pT", logspace(50, 20.0, 400.0));
      book(_h["bjet_2_pT"], pre + "jetb_2_pT", logspace(50, 20.0, 300.0));
      //
      book(_h["ljet_1_pT"], pre + "jetl_1_pT", logspace(50, 20.0, 400.0));
      book(_h["ljet_2_pT"], pre + "jetl_2_pT", logspace(50, 20.0, 300.0));
      //
      if (_mode != 2)  book(_h["tt_mass"], pre + "tt_mass", 200, 300.0, 700.0);
      //
      if (_mode < 2) { // these rely on a hadronic W being part of the ttbar decay
        book(_h["W_mass"], pre + "W_mass", 75, 30, 180);
        book(_h["t_mass"], pre + "t_mass", 150, 130, 430);
        book(_h["t_mass_W_cut"], pre + "t_mass_W_cut", 150, 130, 430);
        book(_h["jetb_1_W_dR"],  pre + "jetb_1_W_dR", 20, 0.0, 7.0);
        book(_h["jetb_1_W_deta"], pre + "jetb_1_W_deta", 20, 0.0, 7.0);
        book(_h["jetb_1_W_dphi"], pre + "jetb_1_W_dphi", 20, 0.0, M_PI);
      }
      //
      book(_h["jetb_1_jetb_2_dR"],   pre + "jetb_1_jetb_2_dR", 20, 0.0, 7.0);
      book(_h["jetb_1_jetb_2_deta"], pre + "jetb_1_jetb_2_deta", 20, 0.0, 7.0);
      book(_h["jetb_1_jetb_2_dphi"], pre + "jetb_1_jetb_2_dphi", 20, 0.0, M_PI);
      book(_h["jetb_1_jetl_1_dR"],   pre + "jetb_1_jetl_1_dR", 20, 0.0, 7.0);
      book(_h["jetb_1_jetl_1_deta"], pre + "jetb_1_jetl_1_deta", 20, 0.0, 7.0);
      book(_h["jetb_1_jetl_1_dphi"], pre + "jetb_1_jetl_1_dphi", 20, 0.0, M_PI);
      book(_h["jetl_1_jetl_2_dR"],   pre + "jetl_1_jetl_2_dR", 20, 0.0, 7.0);
      book(_h["jetl_1_jetl_2_deta"], pre + "jetl_1_jetl_2_deta", 20, 0.0, 7.0);
      book(_h["jetl_1_jetl_2_dphi"], pre + "jetl_1_jetl_2_dphi", 20, 0.0, M_PI);
      if (_mode > 0) { // these rely on at least one leptonic decay mode
        book(_h["jetb_1_l_dR"],   pre + "jetb_1_l_dR", 20, 0.0, 7.0);
        book(_h["jetb_1_l_deta"], pre + "jetb_1_l_deta", 20, 0.0, 7.0);
        book(_h["jetb_1_l_dphi"], pre + "jetb_1_l_dphi", 20, 0.0, M_PI);
        book(_h["jetb_1_l_mass"], pre + "jetb_1_l_mass", 40, 0.0, 500.0);
        if (_mode > 1) {
          book(_h["jetb_1_l2_dR"],   pre + "jetb_1_l2_dR", 20, 0.0, 7.0);
          book(_h["jetb_1_l2_deta"], pre + "jetb_1_l2_deta", 20, 0.0, 7.0);
          book(_h["jetb_1_l2_dphi"], pre + "jetb_1_l2_dphi", 20, 0.0, M_PI);
          book(_h["jetb_1_l2_mass"], pre + "jetb_1_l2_mass", 40, 0.0, 500.0);
        }
      }
    }


    void analyze(const Event& event) {
      const double weight = 1.0;

      // Use the "LFS" projection to require at least one hard charged
      // lepton. This is an experimental signature for the leptonically decaying
      // W. This helps to reduce pure QCD backgrounds.
      const ChargedLeptons& lfs = apply<ChargedLeptons>(event, "LFS");
      MSG_DEBUG("Charged lepton multiplicity = " << lfs.chargedLeptons().size());
      for (const Particle& lepton : lfs.chargedLeptons()) {
        MSG_DEBUG("Lepton pT = " << lepton.pT());
      }

      size_t nLeps = lfs.chargedLeptons().size();
      bool leptonMultiFail = _mode == 3 && nLeps == 0; // non-all-hadronic
      leptonMultiFail |= _mode == 2 && nLeps != 2; // dilepton
      leptonMultiFail |= _mode == 1 && nLeps != 1; // single lepton
      leptonMultiFail |= _mode == 0 && nLeps != 0; // all-hadronic
      if (leptonMultiFail) {
        MSG_DEBUG("Event failed lepton multiplicity cut");
        vetoEvent;
      }

      // Use a missing ET cut to bias toward events with a hard neutrino from
      // the leptonically decaying W. This helps to reduce pure QCD backgrounds.
      // not applied in all-hadronic mode
      const Vector3& met = apply<MissingMomentum>(event, "MissingET").vectorMissingPt();
      MSG_DEBUG("Vector pT = " << met.mod() << " GeV");
      if (_mode > 0 && met.mod() < 30*GeV) {
        MSG_DEBUG("Event failed missing ET cut");
        vetoEvent;
      }

      // Use the "Jets" projection to check how many jets with pT > 30 GeV there are
      // remove jets overlapping with any lepton (dR < 0.3)
      // cut on jet multiplicity depending on ttbar decay mode
      const FastJets& jetpro = apply<FastJets>(event, "Jets");
      const Jets jets = discardIfAnyDeltaRLess(jetpro.jetsByPt(30*GeV), lfs.chargedLeptons(), 0.3);

      if (     _mode == 0 && jets.size() < 6)  vetoEvent; // all-hadronic
      else if (_mode == 1 && jets.size() < 4)  vetoEvent; // single lepton
      else if (_mode == 2 && jets.size() < 2)  vetoEvent; // dilepton
      else if (_mode == 3 && nLeps == 1 && jets.size() < 4)  vetoEvent; // non-allhadronic
      else if (_mode == 3 && nLeps == 2 && jets.size() < 2)  vetoEvent;
      MSG_DEBUG("Event failed jet multiplicity cut");

      // Fill histograms for inclusive jet kinematics 
      _h["njets"]->fill(jets.size(), weight);
      if (jets.size() > 0)  _h["jet_1_pT"]->fill(jets[0].pT()/GeV, weight);
      if (jets.size() > 1)  _h["jet_2_pT"]->fill(jets[1].pT()/GeV, weight);
      if (jets.size() > 2)  _h["jet_3_pT"]->fill(jets[2].pT()/GeV, weight);
      if (jets.size() > 3)  _h["jet_4_pT"]->fill(jets[3].pT()/GeV, weight);
      double ht = 0.0;
      for (const Jet& j : jets) { ht += j.pT(); }
      _h["jet_HT"]->fill(ht/GeV, weight);

      // Sort the jets into b-jets and light jets. We expect one hard b-jet from
      // each top decay, so our 4 hardest jets should include two b-jets. The
      // Jet::bTagged() method is equivalent to perfect experimental
      // b-tagging, in a generator-independent way.
      Jets bjets, ljets;
      for (const Jet& jet : jets) {
        if (jet.bTagged())  bjets += jet;
        else                ljets += jet;
      }
      MSG_DEBUG("Number of b-jets = " << bjets.size());
      MSG_DEBUG("Number of l-jets = " << ljets.size());
      if (bjets.size() != 2) {
        MSG_DEBUG("Event failed post-lepton-isolation b-tagging cut");
        vetoEvent;
      }
      if (_mode == 0 && ljets.size() < 4)  vetoEvent;
      else if (_mode == 1 && ljets.size() < 2)  vetoEvent;
      else if (_mode == 3 && nLeps == 1 && ljets.size() < 2)  vetoEvent;

      // Plot the pTs of the identified jets.
      _h["bjet_1_pT"]->fill(bjets[0].pT(), weight);
      _h["bjet_2_pT"]->fill(bjets[1].pT(), weight);
      // need to check size to cater for dileptonic mode
      if (ljets.size() > 0)  _h["ljet_1_pT"]->fill(ljets[0].pT(), weight);
      if (ljets.size() > 1)  _h["ljet_2_pT"]->fill(ljets[1].pT(), weight);


      // Try to reconstruct ttbar pair (doesn't really work in the dileptonic mode)
      FourMomentum ttpair = bjets[0].mom() + bjets[1].mom();
      if (_mode == 0) {
        ttpair += ljets[0].mom() + ljets[1].mom() + ljets[2].mom() + ljets[3].mom();
      }
      else if (nLeps < 2) {
        ttpair += ljets[0].mom() + ljets[1].mom();
        const FourMomentum lep = lfs.chargedLeptons()[0].mom();
        double pz = findZcomponent(lep, met);
        FourMomentum neutrino(sqrt(sqr(met.x()) + sqr(met.y()) + sqr(pz)), met.x(), met.y(), pz);
        ttpair += lep + neutrino;
      }
      if (nLeps < 2)  _h["tt_mass"]->fill(ttpair.mass()/GeV, weight);

      if (_mode < 2) {
        // Construct the hadronically decaying W momentum 4-vector from pairs of
        // non-b-tagged jets. The pair which best matches the W mass is used. We start
        // with an always terrible 4-vector estimate which should always be "beaten" by
        // a real jet pair.
        FourMomentum W(10*(sqrtS()>0.?sqrtS():14000.), 0, 0, 0);
        for (size_t i = 0; i < ljets.size()-1; ++i) {
          for (size_t j = i + 1; j < ljets.size(); ++j) {
            const FourMomentum Wcand = ljets[i].momentum() + ljets[j].momentum();
            MSG_TRACE(i << "," << j << ": candidate W mass = " << Wcand.mass()/GeV
                      << " GeV, vs. incumbent candidate with " << W.mass()/GeV << " GeV");
            if (fabs(Wcand.mass() - 80.4*GeV) < fabs(W.mass() - 80.4*GeV)) {
              W = Wcand;
            }
          }
        }
        MSG_DEBUG("Candidate W mass = " << W.mass() << " GeV");

        // There are two b-jets with which this can be combined to make the
        // hadronically decaying top, one of which is correct and the other is
        // not... but we have no way to identify which is which, so we construct
        // both possible top momenta and fill the histograms with both.
        const FourMomentum t1 = W + bjets[0].momentum();
        const FourMomentum t2 = W + bjets[1].momentum();
        _h["W_mass"]->fill(W.mass(), weight);
        _h["t_mass"]->fill(t1.mass(), weight);
        _h["t_mass"]->fill(t2.mass(), weight);

        // Placing a cut on the well-known W mass helps to reduce backgrounds
        // only done for all-hadronic and semileptonic mode (since W is hadronic)
        if (!inRange(W.mass()/GeV, 75.0, 85.0))  vetoEvent;
        MSG_DEBUG("W found with mass " << W.mass()/GeV << " GeV");

        _h["t_mass_W_cut"]->fill(t1.mass(), weight);
        _h["t_mass_W_cut"]->fill(t2.mass(), weight);

        _h["jetb_1_W_dR"]->fill(deltaR(bjets[0].momentum(), W),weight);
        _h["jetb_1_W_deta"]->fill(fabs(bjets[0].eta()-W.eta()),weight);
        _h["jetb_1_W_dphi"]->fill(deltaPhi(bjets[0].momentum(),W),weight);
      }

      _h["jetb_1_jetb_2_dR"]->fill(deltaR(bjets[0].momentum(), bjets[1].momentum()),weight);
      _h["jetb_1_jetb_2_deta"]->fill(fabs(bjets[0].eta()-bjets[1].eta()),weight);
      _h["jetb_1_jetb_2_dphi"]->fill(deltaPhi(bjets[0].momentum(),bjets[1].momentum()),weight);

      if (ljets.size() > 0) {
        _h["jetb_1_jetl_1_dR"]->fill(deltaR(bjets[0].momentum(), ljets[0].momentum()),weight);
        _h["jetb_1_jetl_1_deta"]->fill(fabs(bjets[0].eta()-ljets[0].eta()),weight);
        _h["jetb_1_jetl_1_dphi"]->fill(deltaPhi(bjets[0].momentum(),ljets[0].momentum()),weight);
        if (ljets.size() > 1) {
          _h["jetl_1_jetl_2_dR"]->fill(deltaR(ljets[0].momentum(), ljets[1].momentum()),weight);
          _h["jetl_1_jetl_2_deta"]->fill(fabs(ljets[0].eta()-ljets[1].eta()),weight);
          _h["jetl_1_jetl_2_dphi"]->fill(deltaPhi(ljets[0].momentum(),ljets[1].momentum()),weight);
        }
      }

      // lepton-centric plots
      if (_mode > 0) {
        FourMomentum l=lfs.chargedLeptons()[0].momentum();
        _h["jetb_1_l_dR"]->fill(deltaR(bjets[0].momentum(), l),weight);
        _h["jetb_1_l_deta"]->fill(fabs(bjets[0].eta()-l.eta()),weight);
        _h["jetb_1_l_dphi"]->fill(deltaPhi(bjets[0].momentum(),l),weight);
        _h["jetb_1_l_mass"]->fill(FourMomentum(bjets[0].momentum()+l).mass(), weight);

        if (nLeps > 1) {
          FourMomentum l=lfs.chargedLeptons()[1].momentum();
          _h["jetb_1_l2_dR"]->fill(deltaR(bjets[0].momentum(), l),weight);
          _h["jetb_1_l2_deta"]->fill(fabs(bjets[0].eta()-l.eta()),weight);
          _h["jetb_1_l2_dphi"]->fill(deltaPhi(bjets[0].momentum(),l),weight);
          _h["jetb_1_l2_mass"]->fill(FourMomentum(bjets[0].momentum()+l).mass(), weight);
        }
      }

    }

    double findZcomponent(const FourMomentum& lepton, const Vector3& met) const {
      // estimate z-component of momentum given lepton 4-vector and MET 3-vector
      double pz_estimate;
      double m_W = 80.399*GeV;
      double k = (( sqr( m_W ) - sqr( lepton.mass() ) ) / 2 ) + (lepton.px() * met.x() + lepton.py() * met.y());
      double a = sqr ( lepton.E() )- sqr ( lepton.pz() );
      double b = -2*k*lepton.pz();
      double c = sqr( lepton.E() ) * sqr( met.perp() ) - sqr( k );
      double discriminant = sqr(b) - 4 * a * c;
      double quad[2] = { (- b - sqrt(discriminant)) / (2 * a), (- b + sqrt(discriminant)) / (2 * a) }; //two possible quadratic solns
      if (discriminant < 0)  pz_estimate = - b / (2 * a); //if the discriminant is negative
      else { //if the discriminant is greater than or equal to zero, take the soln with smallest absolute value
        double absquad[2];
        for (int n=0; n<2; ++n)  absquad[n] = fabs(quad[n]);
        if (absquad[0] < absquad[1])  pz_estimate = quad[0];
        else                          pz_estimate = quad[1];
      }
      return pz_estimate;
    }

    void finalize() {
      const double sf = crossSection() / sumOfWeights();
      for (auto hist : _h) { scale(hist.second, sf); }
    }

    //@}

  protected:

      size_t _mode;


  private:

    // @name Histogram data members
    //@{
    map<string, Histo1DPtr> _h;
    //@}

  };



  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(MC_TTBAR);

}