Rivet Analyses Reference

NA48_2010_I868871

Decay asymmetries in $\Xi^0\to\Lambda^0\gamma$, $\Lambda^0\pi^0$ and $\Sigma^0\gamma$
Experiment: NA48 ()
Inspire ID: 868871
Status: VALIDATED
Authors:
  • Peter Richardson
References:
  • Phys.Lett. B693 (2010) 241-248
Beams: * *
Beam energies: ANY
Run details:
  • Any process producing Xi0 baryons

Measurement of the decay asymmetries in $\Xi^0\to\Lambda^0\gamma$, $\Lambda^0\pi^0$ and $\Sigma^0\gamma$ by the NA48 experiment. The asymmetry parameter is extracted by fitting to normalised angular distribution. This analysis is useful for testing spin correlations in hadron decays.

Source code: NA48_2010_I868871.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/UnstableParticles.hh"
#include <sstream>
namespace Rivet {


  /// @brief asymmetrics in Xi0 decays
  class NA48_2010_I868871 : public Analysis {
  public:

    /// Constructor
    RIVET_DEFAULT_ANALYSIS_CTOR(NA48_2010_I868871);


    /// @name Analysis methods
    //@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(UnstableParticles(), "UFS" );
      // Book histograms
      book(_h_ctheta_pi0  , "ctheta_pi0"  , 20,-1,1);
      book(_h_ctheta_gamma, "ctheta_gamma", 20,-1,1);
      double step=0.1;
      double xmin=-1.;
      for(unsigned int ix=0;ix<20;++ix) {
	Histo1DPtr temp;
	std::ostringstream title;
	title << "ctheta_Sigma_" << ix;
	book(temp,title.str(), 20,-1,1);
	_h_ctheta_Sigma.add(xmin, xmin+step, temp);
	xmin+=step;
      }
      _nSigma=0.;
    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
      // loop over Omega baryons
      for(const Particle& Xi : apply<UnstableParticles>(event, "UFS").particles(Cuts::abspid==3322)) {
	int sign = Xi.pid()/3322;
	if(Xi.children().size()!=2) continue;
	Particle baryon1,meson1;
	unsigned int mode(0);
	if(Xi.children()[0].pid()==sign*3122 && 
	   Xi.children()[1].pid()==111) {
	  baryon1 = Xi.children()[0];
	  meson1  = Xi.children()[1];
	  mode=1;
	}
	else if(Xi.children()[1].pid()==sign*3122 && 
		Xi.children()[0].pid()==111) {
	  baryon1 = Xi.children()[1];
	  meson1  = Xi.children()[0];
	  mode=1;
	}
	else if(Xi.children()[0].pid()==sign*3122 && 
	   Xi.children()[1].pid()==22) {
	  baryon1 = Xi.children()[0];
	  meson1  = Xi.children()[1];
	  mode=2;
	}
	else if(Xi.children()[1].pid()==sign*3122 && 
		Xi.children()[0].pid()==22) {
	  baryon1 = Xi.children()[1];
	  meson1  = Xi.children()[0];
	  mode=2;
	}
	else if(Xi.children()[0].pid()==sign*3212 && 
	   Xi.children()[1].pid()==22) {
	  baryon1 = Xi.children()[0];
	  meson1  = Xi.children()[1];
	  mode=3;
	}
	else if(Xi.children()[1].pid()==sign*3212 && 
		Xi.children()[0].pid()==22) {
	  baryon1 = Xi.children()[1];
	  meson1  = Xi.children()[0];
	  mode=3;
	}
	else
	  continue;
	if(baryon1.children().size()!=2) continue;
	Particle baryon2,meson2,baryon3,meson3;
	if(mode==1 || mode ==2) {
	  if(baryon1.children()[0].pid()== sign*2212 && 
	     baryon1.children()[1].pid()==-sign*211) {
	    baryon2 = baryon1.children()[0];
	    meson2  = baryon1.children()[1];
	  }
	  else if(baryon1.children()[1].pid()== sign*2212 && 
		  baryon1.children()[0].pid()==-sign*211) {
	    baryon2 = baryon1.children()[1];
	    meson2  = baryon1.children()[0];
	  }
	  else
	    continue;
	}
	else if(mode==3) {
	  if(baryon1.children()[0].pid()== sign*3122 && 
	     baryon1.children()[1].pid()== 22) {
	    baryon2 = baryon1.children()[0];
	    meson2  = baryon1.children()[1];
	  }
	  else if(baryon1.children()[1].pid()== sign*3122 && 
		  baryon1.children()[0].pid()== 22) {
	    baryon2 = baryon1.children()[1];
	    meson2  = baryon1.children()[0];
	  }
	  else
	    continue;
	  if(baryon2.children()[0].pid()== sign*2212 && 
	     baryon2.children()[1].pid()==-sign*211) {
	    baryon3 = baryon2.children()[0];
	    meson3  = baryon2.children()[1];
	  }
	  else if(baryon2.children()[1].pid()== sign*2212 && 
		  baryon2.children()[0].pid()==-sign*211) {
	    baryon3 = baryon2.children()[1];
	    meson3  = baryon2.children()[0];
	  }
	  else
	    continue;
	}
	// first boost to the Xi rest frame
	LorentzTransform boost1 = LorentzTransform::mkFrameTransformFromBeta(Xi.momentum().betaVec());
	FourMomentum pbaryon1 = boost1.transform(baryon1.momentum());
	FourMomentum pbaryon2 = boost1.transform(baryon2.momentum());
	// to lambda rest frame
	LorentzTransform boost2 = LorentzTransform::mkFrameTransformFromBeta(pbaryon1.betaVec());
	Vector3 axis = pbaryon1.p3().unit();
	FourMomentum pp = boost2.transform(pbaryon2);
	// calculate angle
	double cTheta = pp.p3().unit().dot(axis);
	if(mode==1) {
	  _h_ctheta_pi0->fill(cTheta,1.);
	}
	else if(mode==2) {
	  _h_ctheta_gamma->fill(cTheta,1.);
	}
	else if(mode==3) {
	  FourMomentum pbaryon3 = boost1.transform(baryon3.momentum());
	  FourMomentum pp2      = boost2.transform(pbaryon3);
	  Vector3 axis2 = pp.p3().unit();
	  double cTheta2 = pp2.p3().unit().dot(axis2);
	  _h_ctheta_Sigma.fill(cTheta,cTheta2,1.);
	  _nSigma += 1.;
	}
      }
    }

    pair<double,double> calcAlpha(Histo1DPtr hist) {
      if(hist->numEntries()==0.) return make_pair(0.,0.);
      double sum1(0.),sum2(0.);
      for (auto bin : hist->bins() ) {
	double Oi = bin.area();
	if(Oi==0.) continue;
	double ai = 0.5*(bin.xMax()-bin.xMin());
	double bi = 0.5*ai*(bin.xMax()+bin.xMin());
	double Ei = bin.areaErr();
	sum1 += sqr(bi/Ei);
	sum2 += bi/sqr(Ei)*(Oi-ai);
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }
    
    pair<double,double> calcAlpha(BinnedHistogram hist) {
      double sum1(0.),sum2(0.);
      double step=0.1;
      double xmin=-1.;
      for(unsigned int ix=0;ix<20;++ix) {
	double xsum=2.*xmin+step;
	Histo1DPtr h2 = hist.histo(xmin+0.5*step);
	for (auto bin : h2->bins() ) {
	  double Oi = bin.area();
	  if(Oi==0.) continue;
	  double ai = 0.25*(bin.xMax()-bin.xMin())*step;
	  double bi = 0.25*ai*(bin.xMax()+bin.xMin())*xsum;
	  double Ei = bin.areaErr();
	  sum1 += sqr(bi/Ei);
	  sum2 += bi/sqr(Ei)*(Oi-ai);
	}
	xmin+=step;
      }
      return make_pair(sum2/sum1,sqrt(1./sum1));
    }

    /// Normalise histograms etc., after the run
    void finalize() {
      // Xi0 -> Lambda0 pi0
      normalize(_h_ctheta_pi0);
      Scatter2DPtr _h_alpha_pi0;
      book(_h_alpha_pi0,1,1,1);
      pair<double,double> alpha = calcAlpha(_h_ctheta_pi0);
      _h_alpha_pi0->addPoint(0.5, alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
      // Xi0 -> Lambda gamma (N.B. sign due defns)
      normalize(_h_ctheta_gamma);
      Scatter2DPtr _h_alpha_gamma;
      book(_h_alpha_gamma,2,1,1);
      alpha = calcAlpha(_h_ctheta_gamma);
      _h_alpha_gamma->addPoint(0.5,-alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
      // Xi0 -> Sigma gamma
      _h_ctheta_Sigma.scale(1./_nSigma,this);
      Scatter2DPtr _h_alpha_Sigma;
      book(_h_alpha_Sigma,3,1,1);
      alpha = calcAlpha(_h_ctheta_Sigma);
      _h_alpha_Sigma->addPoint(0.5,alpha.first, make_pair(0.5,0.5), make_pair(alpha.second,alpha.second) );
    }

    //@}


    /// @name Histograms
    //@{
    Histo1DPtr _h_ctheta_pi0,_h_ctheta_gamma;
    BinnedHistogram _h_ctheta_Sigma;
    double _nSigma;
    //@}

  };


  // The hook for the plugin system
  RIVET_DECLARE_PLUGIN(NA48_2010_I868871);


}