Rivet Analyses Reference

ZEUS_2000_I524911

Measurement of azimuthal asymmetries in deep inelastic scattering
Experiment: ZEUS (HERA)
Inspire ID: 524911
Status: VALIDATED
Authors:
  • Aryan Borkar aryanborkar9sept@gmail.com
  • Hannes Jung
References:
  • Phys.Lett.B481:199-212,200
  • DOI:10.1016/S0370-2693(00)00430-5
  • arXiv: hep-ex/0003017
Beams: p+ e-, e- p+
Beam energies: (820.0, 27.5); (27.5, 820.0) GeV
Run details:
  • The kinematic region studied is $0.2 < y < 0.8$ and $0.01 < x < 0.1$, corresponding to a $Q^2$ range $180 < Q^2 < 7220 \text{GeV}^2$

The distribution of the azimuthal angle for the charged hadrons has been studied in the hadronic centre-of-mass system for neutral current deep inelastic positron-proton scattering with the ZEUS detector at HERA. Measurements of the dependence of the moments of this distribution on the transverse momenta of the charged hadrons are presented.

Source code: ZEUS_2000_I524911.cc
  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
// -*- C++ -*-
#include "Rivet/Analysis.hh"
#include "Rivet/Projections/FastJets.hh"
#include "Rivet/Projections/DISKinematics.hh"
#include "Rivet/Projections/DISLepton.hh"
#include "Rivet/Projections/ChargedFinalState.hh"

namespace Rivet {


  /// @brief Measurement of azimuthal asymmetries in deep inelastic scattering (ZEUS)
  class ZEUS_2000_I524911 : public Analysis {
  public:

    /// Constructor
    DEFAULT_RIVET_ANALYSIS_CTOR(ZEUS_2000_I524911);


    /// @name Analysis methods
    ///@{

    /// Book histograms and initialise projections before the run
    void init() {

      // Initialise and register projections
      declare(DISLepton(), "Lepton");
      declare(DISKinematics(), "Kinematics");

      // The basic final-state projection:
      // all final-state particles within
      // the given eta acceptance

      const ChargedFinalState cfs;
      declare(cfs, "CFS");

      book(_h["A1"], 1, 1, 1);
      book(_h["A2"], 1, 1, 2);
      book(_h["A3"], 1, 1, 3);
      book(_h["A4"], 1, 1, 4);
                
      book(_p["cosphi"],2, 1, 1) ;
      book(_p["cos2phi"],2, 1, 2) ;
   
// counter pointer to store the no. of events           
      book(_Nevt_after_cuts, "TMP/Nevt_after_cuts");

      

    }


    /// Perform the per-event analysis
    void analyze(const Event& event) {
    
    //const FinalState& fsall = apply<FinalState>(event, "FS");
    const ChargedFinalState& cfs = apply<ChargedFinalState>(event, "CFS");

    const DISKinematics& dk = applyProjection<DISKinematics>(event, "Kinematics");
    const DISLepton& dl = applyProjection<DISLepton>(event,"Lepton");

    double x = dk.x();
    double y = dk.y();
    const double Q2 = dk.Q2();
    
     double PT[] = { 0.25, 0.5, 0.75, 1.0, 1.25, 1.5, 1.75, 2.0};
    // Extract the particles other than the lepton

      if(x<0.01||x>0.1) vetoEvent;
      if(y<0.2||y>0.8) vetoEvent;
      if(Q2 > 7220 || Q2 < 180) vetoEvent;

      _Nevt_after_cuts -> fill();
        
      Particles particles;
      particles.reserve(cfs.particles().size());
      
      ConstGenParticlePtr dislepGP = dl.out().genParticle();
      for (const Particle& p : cfs.particles()) {
          ConstGenParticlePtr loopGP = p.genParticle();

          if (loopGP == dislepGP) continue;
          particles.push_back(p);
      }
    
    const LorentzTransform hcmboost = dk.boostHCM();
    for (size_t ip1 = 0; ip1 < particles.size(); ++ip1) {
        const Particle& p = particles[ip1];
       
       // calculate zh        
        double zh = 2.*x/Q2* (dk.beamHadron().E()*p.momentum().E() - dk.beamHadron().pz()*p.momentum().pz()) ;
       // cout << " zh " << zh << endl;
       // Boost to hcm
       
       if (zh < 0.2 ) continue ;

         const FourMomentum hcmMom = hcmboost.transform(p.momentum());      
                  
         const double phi =mapAngleMPiToPi(hcmMom.phi())/degree ;
         
         
         
// Filling histograms with values of cos(phi) and cos(2phi) wrt the corresponding momentum cuts

         for (size_t i = 0; i < 8; ++i) {
            if(hcmMom.pT() > PT[i] ) { 
             _p["cosphi"]->fill(i+1,cos(hcmMom.phi()));
             _p["cos2phi"]->fill(i+1,cos(2.*hcmMom.phi()));
             }
         }
         
         
                    
         if(hcmMom.pT() > PT[1] ) { _h["A1"] -> fill(phi); }          
                     
         if(hcmMom.pT() > PT[3] ) { _h["A2"] -> fill(phi); }
         
         if(hcmMom.pT() > PT[5] ) { _h["A3"] -> fill(phi); }
                   
         if(hcmMom.pT() > PT[7] ) { _h["A4"] -> fill(phi); }
        
     }
        
  
  }



    /// Normalise histograms etc., after the run
    void finalize() {

      // correct binwidth in degree to correct for binning from degree to rad by: binwidth/(2PI/10.)
      double norm = dbl(*_Nevt_after_cuts) ;
   //   cout << " Nev " << norm << " bin_width= " <<_h["A2"]->bin(0).xWidth() << endl;
      double degTOrad_width = _h["A1"]->bin(0).xWidth()*10./2./M_PI ;
      if (norm > 1 ) {
         scale(_h["A1"], degTOrad_width/norm); 
         scale(_h["A2"], degTOrad_width/norm); 
         scale(_h["A3"], degTOrad_width/norm);
         scale(_h["A4"], degTOrad_width/norm); 
      }     
      
    }

    ///@}


    /// @name Histograms
    ///@{
    map<string, Histo1DPtr> _h;
    map<string, Profile1DPtr> _p;
    map<string, CounterPtr> _c;
    CounterPtr _Nevt_after_cuts;
    ///@}
    


  };


  DECLARE_RIVET_PLUGIN(ZEUS_2000_I524911);

}