file pyext/yoda/plotting.py
pyext/yoda/plotting.py
Namespaces
Name |
---|
yoda |
yoda::plotting |
Source code
# -*- python -*-
"""
Plotting utilities, particularly for interaction with matplotlib and Rivet make-plots
"""
import yoda
import sys
import numpy as np
import matplotlib as mpl
# TODO: Move to core objects
# def same_binning_as(self, other):
# if self.dim != other.dim:
# return False
# if not (other.x == self.x).all() and \
# (other.exminus == self.exminus).all() and \
# (other.explus == self.explus).all():
# return False
# if self.dim == 2:
# return True
# return (other.y == self.y).all() and \
# (other.eyminus == self.eyminus).all() and \
# (other.eyplus == self.eyplus).all()
def read_plot_keys(datfile):
import re
re_begin = re.compile("#*\s*BEGIN\s+PLOT\s*(\w*)")
re_comment = re.compile("#.*")
re_attr = re.compile("(\w+)\s*=\s*(.*)")
re_end = re.compile("#*\s*END\s+PLOT\s+\w*")
plotkeys = {}
with open(datfile) as f:
inplot = False
name = None
for line in f:
l = line.strip()
if re_begin.match(l):
inplot = True
name = re_begin.match(l).group(1)
elif re_end.match(l):
inplot = False
name = None
elif re_comment.match(l):
continue
elif inplot:
m = re_attr.match(l)
if m is None: continue
plotkeys.setdefault(name, {})[m.group(1)] = m.group(2)
return plotkeys
def mplinit(engine="MPL", font="TeX Gyre Pagella", fontsize=17, mfont=None, textfigs=True):
"""One-liner matplotlib (mpl) setup.
By default mpl will be configured with its native MathText rendering
backend, and a Palatino-like font for both text and math contexts, using
'lower-case numerals' if supported. Setting the engine to 'TEX' will use
standard mpl rendering, with calls to LaTeX for axis labels and other text;
setting it to 'PGF' will use the TeX PGF renderer: both these modes are much
slower than MPL mode, but the latter only supports a limited set of LaTeX
macros and does not render as nicely as the TeX backends.
The font and mfont optional arguments can be used to choose a different text
font and math font respectively; if mfont is None, it defaults to the same
as the text font. The textfigs boolean argument can be set false to disable
the lower-case/text/old-style numerals and use 'upper-case' numerals
everywhere. These options do not currently apply to the MPL rendering engine.
"""
mpl.rcParams.update({
"text.usetex" : (engine != "MPL"),
"font.size" : int(fontsize),
"font.family" : "serif", #< TODO: make configurable? auto-detect?
})
texpreamble = [r"\usepackage{amsmath,amssymb}", r"\usepackage{mathspec}"]
mfont = mfont if mfont else font
fontopts = "[Numbers=OldStyle]" if textfigs else ""
mfontopts = fontopts.replace("]", ",") + "Scale=MatchUppercase" + "]"
texpreamble.append( r"\setmainfont{fopts}{{{font}}}".format(fopts=fontopts, font=font) )
texpreamble.append( r"\setmathsfont(Digits,Latin){fopts}{{{font}}}".format(fopts=mfontopts, font=mfont) )
if engine.upper() == "PGF":
mpl.use("pgf")
mpl.rcParams["pgf.preamble"] = texpreamble
# TODO: Fix?
# elif engine.upper() == "TEX":
# mpl.rcParams["text.latex.preamble"] = texpreamble
return mpl
initmpl = mplinit
setup_mpl = mplinit
def show():
"""
Convenience call to matplotlib.pyplot.show()
NOTE: done this way to avoid import of pyplot before mplinit()
or mpl.use() has been (optionally) called.
"""
import matplotlib.pyplot as plt
plt.show()
def mk_figaxes_1d(ratio=True, title=None, figsize=(8,6)):
"Make a standard main+ratio plot figure and subplot layout"
import matplotlib.pyplot as plt
fig = plt.figure(figsize=figsize)
#fig = mpl.figure.Figure(figsize=figsize, tight_layout=True)
if title:
fig.suptitle(title, horizontalalignment="left", x=0.13)
axmain, axratio = None, None
if ratio:
try:
gs = mpl.gridspec.GridSpec(2, 1, height_ratios=[3,1], hspace=0)
axmain = fig.add_subplot(gs[0])
#axmain.hold(True)
axratio = fig.add_subplot(gs[1], sharex=axmain)
#axratio.hold(True)
axratio.axhline(1.0, color="gray") #< Ratio = 1 marker line
except:
sys.stderr.write("matplotlib.gridspec not available: falling back to plotting without a ratio\n")
ratio = False
if not ratio:
axmain = fig.add_subplot(1,1,1)
#axmain.hold(True)
return fig, (axmain, axratio)
def set_axis_labels_1d(axmain, axratio, xlabel=None, ylabel=None, ratioylabel=None):
axmain.set_ylabel(ylabel, y=1, ha="right", labelpad=None)
if axratio:
axmain.xaxis.set_major_locator(mpl.ticker.NullLocator())
axratio.set_xlabel(xlabel, x=1, ha="right", labelpad=None)
axratio.set_ylabel(ratioylabel)
else:
axmain.set_xlabel(xlabel, x=1, ha="right", labelpad=None)
def mk_lowcase_dict(d):
"Convert the keys of a str->obj dict to lower-case"
return dict((k.lower(), v) for (k,v) in d.items())
# TODO: Needs generalisation for 2D marginal axes)
def setup_axes_1d(axmain, axratio, **plotkeys):
plotkeys = mk_lowcase_dict(plotkeys)
xlabel = plotkeys.get("xlabel", "")
ylabel = plotkeys.get("ylabel", "")
ratioylabel = plotkeys.get("ratioylabel", "ratio")
set_axis_labels_1d(axmain, axratio, xlabel, ylabel, ratioylabel)
xmeasure = "log" if yoda.util.as_bool(plotkeys.get("logx", False)) else "linear"
ymeasure = "log" if yoda.util.as_bool(plotkeys.get("logy", False)) else "linear"
ratioymeasure = "log" if yoda.util.as_bool(plotkeys.get("ratiology", False)) else "linear"
axmain.set_xscale(xmeasure)
axmain.set_yscale(ymeasure)
if axratio:
axratio.set_xscale(xmeasure)
axratio.set_yscale(ratioymeasure)
if "ymin" in plotkeys:
axmain.set_ylim(bottom=float(plotkeys.get("ymin")))
if "ymax" in plotkeys:
axmain.set_ylim(top=float(plotkeys.get("ymax")))
#
if "xmin" in plotkeys:
axmain.set_xlim(left=float(plotkeys.get("xmin")))
if "xmax" in plotkeys:
axmain.set_xlim(right=float(plotkeys.get("xmax")))
#
if axratio:
# TODO: RatioSymmRange option
# axratio.set_xlim([xmin-0.001*xdiff, xmax+0.001*xdiff]) # <- TODO: bad on a log scale!
if "xmin" in plotkeys:
axratio.set_xlim(left=float(plotkeys.get("xmin")))
if "xmax" in plotkeys:
axratio.set_xlim(right=float(plotkeys.get("xmax")))
if "ratioymin" in plotkeys:
axratio.set_ylim(bottom=float(plotkeys.get("ratioymin")))
if "ratioymax" in plotkeys:
axratio.set_ylim(top=float(plotkeys.get("ratioymax")))
# TODO: Ratio plot manual ticks
def plot_hist_on_axes_1d(axmain, axratio, h, href=None, default_color="black", default_linestyle="-", **plotkeys):
hkeys = mk_lowcase_dict(h.annotationsDict())
hkeys.update(plotkeys)
plotkeys = hkeys
# TODO: Split into different plot styles: line/filled/range, step/diag/smooth, ...?
default_color = plotkeys.get("color", default_color)
marker = plotkeys.get("marker", plotkeys.get("polymarker", None)) # <- make-plots translation
marker = {"*":"o"}.get(marker, marker) # <- make-plots translation
mcolor = plotkeys.get("linecolor", default_color)
errbar = plotkeys.get("errorbars", None)
ecolor = plotkeys.get("errorbarscolor", default_color)
line = plotkeys.get("line", None)
lcolor = plotkeys.get("linecolor", default_color)
lstyle = plotkeys.get("linestyle", default_linestyle)
lstyle = {"solid":"-", "dashed":"--", "dotdashed":"-.", "dashdotted":"-.", "dotted":":"}.get(lstyle, lstyle) # <- make-plots translation
lwidth = 1.4
msize = 7
if not any([marker, line, errbar]):
line = "step"
artists = None
if errbar:
artists = axmain.errorbar(h.xVals(), h.yVals(), xerr=h.xErrs(), yerr=h.yErrs(), color=ecolor, linestyle="none", linewidth=lwidth, capthick=lwidth) # linestyle="-", marker="o",
if line == "step":
artists = axmain.step(np.append(h.xMins(), h.xMax()), np.append(h.yVals(), h.yVals()[-1]), where="post", color=lcolor, linestyle=lstyle, linewidth=lwidth)
elif line == "diag":
artists = axmain.plot(h.xVals(), h.yVals(), color=lcolor, linestyle=lstyle, linewidth=lwidth)
elif line == "smooth":
from scipy.interpolate import spline
xnew = np.linspace(min(h.xVals()), max(h.xVals()), 3*h.numBins)
ynew = spline(h.xVals(), h.yVals(), xnew)
artists = axmain.plot(xnew, ynew, color=lcolor, linestyle=lstyle, linewidth=lwidth)
if marker:
artists = axmain.plot(h.xVals(), h.yVals(), marker=marker, markersize=msize, linestyle="none", color=mcolor, markeredgecolor=mcolor)
if h.annotation("Title") and artists:
artists[0].set_label(h.annotation("Title"))
ratioartists = None
if href and h is not href:
# TODO: exclude and specify order via RatioIndex
# assert h.same_binning_as(href)
# TODO: log ratio or #sigma deviation
yratios = np.array(h.yVals())/np.array(href.yVals())
# TODO: Same styling control as for main plot (with Ratio prefix, default to main plot style)
ratioartists = axratio.step(np.append(href.xMins(), href.xMax()), np.append(yratios, yratios[-1]), where="post", color=lcolor, linestyle=lstyle, linewidth=lwidth)
# TODO: Diag plot
# axratio.plot(href["x"], yratios, color="r", linestyle="--")
# TODO: Smoothed plot
return artists
def plot(hs, outfile=None, ratio=True, show=False, axmain=None, axratio=None, **plotkeys):
"""
Plot the given histograms on a single figure, returning (fig, (main_axis,
ratio_axis)). Show to screen if the second arg is True, and saving to outfile
if it is otherwise non-null.
"""
plotkeys = mk_lowcase_dict(plotkeys)
if isinstance(hs, yoda.AnalysisObject):
hs = [hs,]
ratio = False
xmin = float(plotkeys.get("xmin", min(h.xMin() for h in hs)))
xmax = float(plotkeys.get("xmax", max(h.xMax() for h in hs)))
xdiff = xmax - xmin
# print xmin, xmax, xdiff
# TODO: Tweak max-padding for top tick label... sensitive to log/lin measure
ymin = plotkeys.get("ymin", min(min(h.yVals()) for h in hs))
#print( max(max(h.yVals()) for h in hs) )
ymax = plotkeys.get("ymax", 1.1*max(max(h.yVals()) for h in hs))
ymin = float(ymin)
ymax = float(ymax)
ydiff = ymax - ymin
# print ymin, ymax, ydiff
href = None
# TODO: Use ratio to setdefault RatioPlot in plotkeys, then use that to decide whether to look for href
if ratio:
for h in hs:
hkeys = mk_lowcase_dict(h.annotationsDict())
if yoda.util.as_bool(hkeys.get("ratioref", False)):
if href is None:
href = h
else:
#print "Multiple ratio references set: using first value = {}".format(href.path)
break
if href is None: #< no ref found -- maybe all were disabled?
ratio = False
title = plotkeys.get("title", "")
if not axmain:
fig, (axmain, axratio) = mk_figaxes_1d(ratio and not axratio, title)
else:
fig = axmain.get_figure()
axmain.set_xlim([xmin, xmax])
axmain.set_ylim([ymin, ymax])
if axratio:
axratio.set_xlim([xmin, xmax])
axratio.set_ylim(auto=True)
setup_axes_1d(axmain, axratio, **plotkeys)
# TODO: specify ratio display in log/lin, abs, or #sigma, and as x/r or (x-r)/r
if axratio:
ref_ymax_ratios = np.array(href.yMaxs())/np.array(href.yVals())
ref_ymin_ratios = np.array(href.yMins())/np.array(href.yVals())
# TODO: Diag: (needs -> limit handling at ends)
# axratio.fill_between(href.x, ref_ymin_ratios, ref_ymax_ratios, edgecolor="none", facecolor=ratioerrcolor, interpolate=False)
# Stepped:
def xedges_dbl(h):
edges = np.empty((2*len(h.xVals()),))
edges[0::2] = h.xMins()
edges[1::2] = h.xMaxs()
return edges
def dbl_array(arr):
return sum(([x,x] for x in arr), [])
ratioerrcolor = plotkeys.get("ratioerrcolor", "yellow")
axratio.fill_between(xedges_dbl(href), dbl_array(ref_ymin_ratios), dbl_array(ref_ymax_ratios),
edgecolor="none", facecolor=ratioerrcolor)
# TODO: Smoothed: (needs -> limit handling at ends)
# Redraw ratio = 1 marker line:
axratio.axhline(1.0, color="gray")
COLORS = ["red", "blue", "magenta", "orange", "green"]
LSTYLES = ["-", "--", "-.", ":"]
some_valid_label = False
for ih, h in enumerate(hs):
#print ih, h.path
aa = plot_hist_on_axes_1d(axmain, axratio, h, href, COLORS[ih % len(COLORS)], LSTYLES[ih % len(LSTYLES)])
if aa and not aa[0].get_label().startswith("_"):
# print "@@@", aa[0].get_label()
some_valid_label = True
if some_valid_label: #< No point in writing a legend if there are no labels
pass #axmain.legend(loc=plotkeys.get("LegendPos", "best"), fontsize=plotkeys.get("LegendFontSize", "x-small"), frameon=False)
if axratio:
axratio.yaxis.set_major_locator(mpl.ticker.MaxNLocator(4, prune="upper"))
fig.tight_layout()
if outfile:
#print "Saving to " + outfile
fig.savefig(outfile)
if show:
import matplotlib.pyplot as plt
plt.show()
return fig, (axmain, axratio)
plot_hists_1d = plot
plot_hist_1d = plot
def _plot1arg(args):
"Helper function for mplot, until Py >= 3.3 multiprocessing.pool.starmap() is available"
return plot(*args)
def nplot(hs, outfiles=None, ratio=True, show=False, nproc=1, **plotkeys):
"""
Plot the given list of histogram(s), cf. many calls to plot().
hs must be an iterable, each entry of which will be the content of a single
plot: the entries can either be single histograms or lists of histograms,
i.e. either kind of valid first argument to plot().
Outfiles must be an iterable corresponding to hs, and ratio may either be a
bool or such an iterable.
The return value is a list of the return tuples from each call to plot(), of
the same length as the hs arg.
MULTIPROCESSING -- *WARNING* CURRENTLY BROKEN
The main point of this function, other than convenience, is that the Python
multiprocessing module can be used to distribute the work on to multiple
parallel processes.
The nproc argument should be the integer number of parallel processes on
which to distribute the plotting. nproc = None (the default value) will use
Ncpu-1 or 1 process, whichever is larger. If nproc = 1, multiprocessing will
not be used -- this avoids overhead and eases debugging.
"""
argslist = []
for i, hs_arg in enumerate(hs):
outfile_arg = outfiles[i] if outfiles else None
ratio_arg = ratio[i] if hasattr(ratio, "__iter__") else ratio
show_arg = False #< we just do this once, at the end
plotkeys_arg = plotkeys if type(plotkeys) is dict else plotkeys[i]
argslist.append( (hs_arg, outfile_arg, ratio_arg, show_arg, None, None, plotkeys_arg) )
#print argslist
# TODO: make the multiprocessing work
import multiprocessing
nproc = nproc or multiprocessing.cpu_count() or 1
if nproc > 1:
pool = multiprocessing.Pool(processes=nproc)
res = pool.map_async(_plot1arg, argslist)
rtn = res.get()
else:
rtn = [_plot1arg(args) for args in argslist]
if show:
import matplotlib.pyplot as plt
plt.show()
return rtn
Updated on 2022-08-08 at 20:05:55 +0100